Effectivity and reducibility with ordinal Turing machines

Author:

Carl Merlin1

Affiliation:

1. Institut für mathematische, naturwissenschaftliche und technische Bildung, Abteilung für Mathematik und ihre Didaktik, Europa-Universität Flensburg, Germany. merlin.carl@uni-flensburg.de

Abstract

This article expands our work in (LNCS 9709 (2016), 225–233). By its reliance on Turing computability, the classical theory of effectivity, along with effective reducibility and Weihrauch reducibility, is only applicable to objects that are either countable or can be encoded by countable objects. We propose a notion of effectivity based on Koepke’s Ordinal Turing Machines (OTMs) that applies to arbitrary set-theoretical Π 2 -statements, along with according variants of effective reducibility and Weihrauch reducibility. As a sample application, we compare various choice principles with respect to effectivity.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower bounds on β ( α ) and other properties of α-register machines;Computability;2024-03-06

2. Understanding the Computational Complexity of Diverse Classes of Turing and Super-Turing Computational Models;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

3. Realisability for infinitary intuitionistic set theory;Annals of Pure and Applied Logic;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3