Extending properly n - REA sets1

Author:

Cholak Peter1,Gerdes Peter2

Affiliation:

1. Mathematics Department, University of Notre Dame du Lac, 255 Hurley Building, Notre Dame, IN 46556, USA

2. Mathematics Department, Indiana University, Bloomington, Rawles Hall, 831 East 3rd St., Bloomington, IN 47405, USA

Abstract

In 1982, Soare and Stob proved that if A is an r.e. set which isn’t computable then there is a set of the form A ⊕ W e which isn’t of r.e. Turing degree. If we define a properly n + 1-REA set to be an n + 1-REA set which isn’t Turing equivalent to any n-REA set this result shows that every properly 1-REA set can be extended to a properly 2-REA set. This result was extended by Cholak and Hinman in 1994. They proved that every 2-REA set can be extended to a properly 3-REA set. This leads naturally to the hypothesis that every properly n-REA set can be extended to a properly n + 1-REA set. Here we show this hypothesis is false and that there is a properly 3-REA set which can’t be extended to a properly 4-REA set. Moreover we show this set A can be Δ 2 0 .

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

Reference5 articles.

1. Pseudo-jump operators. II: Transfinite iterations, hierarchies and minimal covers;Carl;The Journal of Symbolic Logic,1984

2. Iterated relative recursive enumerability;Cholak;Archive for Mathematical Logic,1994

3. P. Odifreddi, Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers, Vol. 1, Elsevier, 1992.

4. H. Rogers, Theory of Recursive Functions and Effective Computability, MIT Press, Cambridge, Mass, 1987.

5. R.I. Soare and M. Stob, Relative recursive enumerability, in: Studies in Logic and the Foundations of Mathematics, Vol. 107, Elsevier, 1982, pp. 299–324.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3