Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices

Author:

Muniasamy Anandhavalli

Abstract

BACKGROUND: A daily activity routine is vital for overall health and well-being, supporting physical and mental fitness. Consistent physical activity is linked to a multitude of benefits for the body, mind, and emotions, playing a key role in raising a healthy lifestyle. The use of wearable devices has become essential in the realm of health and fitness, facilitating the monitoring of daily activities. While convolutional neural networks (CNN) have proven effective, challenges remain in quickly adapting to a variety of activities. OBJECTIVE: This study aimed to develop a model for precise recognition of human activities to revolutionize health monitoring by integrating transformer models with multi-head attention for precise human activity recognition using wearable devices. METHODS: The Human Activity Recognition (HAR) algorithm uses deep learning to classify human activities using spectrogram data. It uses a pretrained convolution neural network (CNN) with a MobileNetV2 model to extract features, a dense residual transformer network (DRTN), and a multi-head multi-level attention architecture (MH-MLA) to capture time-related patterns. The model then blends information from both layers through an adaptive attention mechanism and uses a SoftMax function to provide classification probabilities for various human activities. RESULTS: The integrated approach, combining pretrained CNN with transformer models to create a thorough and effective system for recognizing human activities from spectrogram data, outperformed these methods in various datasets – HARTH, KU-HAR, and HuGaDB produced accuracies of 92.81%, 97.98%, and 95.32%, respectively. This suggests that the integration of diverse methodologies yields good results in capturing nuanced human activities across different activities. The comparison analysis showed that the integrated system consistently performs better for dynamic human activity recognition datasets. CONCLUSION: In conclusion, maintaining a routine of daily activities is crucial for overall health and well-being. Regular physical activity contributes substantially to a healthy lifestyle, benefiting both the body and the mind. The integration of wearable devices has simplified the monitoring of daily routines. This research introduces an innovative approach to human activity recognition, combining the CNN model with a dense residual transformer network (DRTN) with multi-head multi-level attention (MH-MLA) within the transformer architecture to enhance its capability.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3