Identification of microRNA-mRNA Regulatory Networks with Therapeutic Values in Alzheimer’s Disease by Bioinformatics Analysis

Author:

Kavoosi Sakine1,Shahraki Ali1,Sheervalilou Roghayeh2ORCID

Affiliation:

1. Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2. Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran

Abstract

Background: Alzheimer’s disease (AD) is the most prevalent neurological disorder worldwide, affecting approximately 24 million individuals. Despite more than a century of research on AD, its pathophysiology is still not fully understood. Objective: Recently, genetic studies of AD have focused on analyzing the general expression profile by employing high-throughput genomic techniques such as microarrays. Current research has leveraged bioinformatics advancements in genetic science to build upon previous efforts. Methods: Data from the GSE118553 dataset used in this investigation, and the analyses carried out using programs such as Limma and BioBase. Differentially expressed genes (DEGs) and differentially expressed microRNAs (DEmiRs) associated with AD identified in the studied areas of the brain. Target genes of the DEmiRs identified using the MultiMiR package. Gene ontology (GO) completed using the Enrichr website, and the protein-protein interaction (PPI) network for these genes drawn using STRING and Cytoscape software. Results: The findings introduced DEGs including CTNNB1, PAK2, MAP2K1, PNPLA6, IGF1R, FOXL2, DKK3, LAMA4, PABPN1, and GDPD5, and DEmiRs linked to AD (miR-106A, miR-1826, miR-1253, miR-10B, miR-18B, miR-101-2, miR-761, miR-199A1, miR-379 and miR-668), (miR-720, miR-218-2, miR-25, miR-602, miR-1226, miR-548K, miR-H1, miR-410, miR-548F2, miR-181A2), (miR-1470, miR-651, miR-544, miR-1826, miR-195, miR-610, miR-599, miR-323, miR-587 and miR-340), and (miR-1282, miR-1914, miR-642, miR-1323, miR-373, miR-323, miR-1322, miR-612, miR-606 and miR-758) in cerebellum, frontal cortex, temporal cortex, and entorhinal cortex, respectively. Conclusions: The majority of the genes and miRNAs identified by our findings may be employed as biomarkers for prediction, diagnosis, or therapy response monitoring.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3