Predicting Parkinson’s Disease and Its Pathology via Simple Clinical Variables

Author:

Karabayir Ibrahim12,Butler Liam1,Goldman Samuel M.34,Kamaleswaran Rishikesan56,Gunturkun Fatma7,Davis Robert L.7,Ross G. Webster89,Petrovitch Helen89,Masaki Kamal910,Tanner Caroline M.34,Tsivgoulis Georgios7,Alexandrov Andrei V.7,Chinthala Lokesh K.7,Akbilgic Oguz11

Affiliation:

1. Loyola University Chicago, Maywood, IL, USA

2. Kirklareli University, Kirklareli, Turkey

3. University of California San Francisco, San Francisco, CA, USA

4. San Francisco VA Health Care System, San Francisco, CA, USA

5. Emory University, Atlanta, GA, USA

6. Georgia Institute of Technology, Atlanta, GA, USA

7. University of Tennessee Health Sciences Center, Memphis,, TN, USA

8. Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA

9. Department of Geriatric Medicine, University of Hawaii, Honolulu, HI, USA

10. Kuakini Medical Center, Honolulu, HI, USA

11. Wake Forest School of Medicine, Winston-Salem, NC, USA

Abstract

Background: Parkinson’s disease (PD) is a chronic, disabling neurodegenerative disorder. Objective: To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests. Methods: Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995–2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density. Results: The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76–0.89) or 5 years (AUC 0.77, 95%CI 0.71–0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = –0.57, p < 0.01). Conclusion: Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Reference52 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3