Affiliation:
1. Work Ability and Working Careers, Finnish Institute of Occupational Health, Oulu, Työterveyslaitos, Finland
2. Work Ability and Working Careers, Finnish Institute of Occupational Health, Helsinki, Työterveyslaitos, Finland
Abstract
Background: The body of literature regarding the use of an upper limb exoskeleton during authentic working conditions is sparse. Objective: The aim of this study was to evaluate the effectiveness of an upper limb exoskeleton in reducing muscle strain during authentic industrial construction work. Methods: Fifteen male participants, comprising of roofers, scaffolders, builders, bricklayers, and graders performing overhead work participated in the study. During work without (REF) and with exoskeleton (EXO), muscle activity from 8 muscles, heart rate (HR), metabolic equivalent (MET), and upper arm elevation angles were recorded. Results: When using the exoskeleton, a significant reduction of 20.2% in average muscle activity of 8 muscles was found. The largest effect focused on m. deltoideus, where 46.2 and 32.2% reduction occurred in medial and anterior parts of the muscle, respectively. HR and MET were unaffected. Upper arm elevation angles were similar between REF and EXO, indicating equal biomechanical loading. Conclusions: This study indicates that exoskeletons show great promise in reducing the potential for musculoskeletal strain during authentic overhead construction work.