Power transformers internal fault diagnosis based on deep convolutional neural networks
Author:
Affiliation:
1. Department of Power and Control Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference52 articles.
1. Keras: Deep learning library for theano and tensorflow. [Online]. Avaialable: https://keras.io/, 2015.
2. Deep learning for biological image classification;Affonso;ExpertSystems with Applications,2017
3. Discrimination of internal fault from magnetising inrush current in power transformers based on sine-wave least-squares curve fitting method;Ahmadi;IET Science, Measurement & Technology,2015
4. A New Digital Dynamic Algorithm for Detection of Magnetizing Inrush Current in Transformers;Al-Othman;Electric Power Components and Systems,2009
5. A method to identify inrush currents in power transformers protection based on the differential current gradient;Alencar;Electric Power Systems Research,2014
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Power line fault diagnosis based on convolutional neural networks;Heliyon;2024-04
2. Research and Analysis on the Influence Factors of Smart Meter Disturbance Based on Time Series Interval Values;2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2);2023-12-15
3. Hybrid fuzzy and gated recurrent network based artificial intelligence approach for fault diagnosis and prognosis of transformers using dissolved gas analysis;Journal of Intelligent & Fuzzy Systems;2023-10-04
4. Data augmentation for fault diagnosis of oil-immersed power transformer;Energy Reports;2023-10
5. Diagnosis of Power Transformer Internal Fault Based on Denoising Autoencoder and Optimized Convolutional Neural Network;2023 International Conference on Power System Technology (PowerCon);2023-09-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3