Detection of lung cancer using novel attention gate residual U-Net model and KNN classifier from computer tomography images

Author:

Princy Magdaline P.1,Ganesh Babu T.R.2

Affiliation:

1. Department of Electronics and Communication Engineering, Muthayammal Engineering College, Rasipuram, India

2. Department of Electronics and Communication, Muthayammal Engineering College, Rasipuram, India

Abstract

 Computed tomography (CT) scan pictures are routinely employed in the automatic identification and classification of lung cancer. The texture distribution of lung nodules can vary widely over the CT scan space and requires accurate detection. The evaluation of discriminative information in this volume can tremendously aid the classification process. A convolutional neural network, the Attention Gate Residual U-Net model, and KNN classifiers are utilized to detect lung cancer. The dataset of 1097 computed tomography (CT) images utilized in this study was obtained from the Iraq-Oncology Teaching Hospital/National Centre for Cancer Diseases (IQ-OTH/NCCD) to segment and classify lung tumors from CT images using the novel Attention Gate Residual U-Net model, i.e., AGResU-Net and CNN architecture. The initial step is applying CNN to detect normal, benign, and malignant patients in CT images. Second, use AGResU-Net to partition lung tumour areas. In the third section of the project, a KNN classifier is used to determine if an instance is malignant or benign. In the initial phase, CNN was proposed to classify three distinct regions. Three optimization strategies are used in this work: Adam, RMSP, and SGDM. The classifier’s accuracy is 97%, 85%, and 82%, respectively. When compared to the RMSP optimizer, the Adams optimizer predicts probability rates more accurately. In the second phase, AGResU-Net is used for schematic segmentation of the tumor region. In the third phase, a KNN classifier is used to classify benign and malignant tumor from the segmented tumor regions. A new segmentation of the lung tumor model is proposed. In this developed algorithm, the labelled classified data set and the segmented tumor output result provide the same accuracy. The study results demonstrate high tumour classification accuracy and high probability of detection in benign and malignant cases.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3