MAO-DBN based membrane fouling prediction

Author:

Wang Zhiwen123,Zhao Yibin1,Shi Yaoke1,Ling Guobi1

Affiliation:

1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China

2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou, China

3. National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou, China

Abstract

Due to the complexity of the factors influencing membrane fouling in membrane bioreactors (MBR), it is difficult to accurately predict membrane fouling. This paper proposes a multi-strategy of integration aquila optimizer deep belief network (MAO-DBN) based membrane fouling prediction method. The method is developed to improve the accuracy and efficiency of membrane fouling prediction. Firstly, partial least squares (PLS) are used to reduce the dimensionality of many membrane fouling factors to improve the algorithm’s generalization ability. Secondly, considering the drawbacks of deep belief network (DBN) such as long training time and easy overfitting, piecewise mapping is introduced in aquila optimizer (AO) to improve the uniformity of population distribution, while adaptive weighting is used to improve the convergence speed and prevent falling into local optimum. Finally, the prediction of membrane fouling is carried out by utilizing membrane fouling data as the research object. The experimental results show that the method proposed in this paper can achieve accurate prediction of membrane fluxes, with an 88.45% reduction in RMSE and 87.53% reduction in MAE compared with the DBN model before improvement. The experimental results show that the model proposed in this paper achieves a prediction accuracy of 98.61%, both higher than other comparative models, which can provide a theoretical basis for membrane fouling prediction in the practical operation of membrane water treatment.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3