Hybrid ResGRU: Effective brain tumour classification approach using of abnormal images

Author:

Rajendran Aishwarya1,Ganesan Sumathi1,Rathis Babu T.K.S.2

Affiliation:

1. Department of Computer Science and Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Tamil Nadu, India

2. Department of Computer Science and Engineering, Sridevi Womens Engineering College, Hyderabad, India

Abstract

Brain tumor is observed to be grown in irregular shape and presented deep inside the tissues that led to cancer. Human brain tumor identification and categorization are performed with high latency, but also an essential task for the medical experts. The assistance through the automated diagnosis is generally utilized for the advancement in the diagnosis ability in order to get superior accuracy in brain tumor detection. Although the researches are enhancing the brain tumor detection performance, the highly challenging is to segment the brain tumor since it has variability concerning the tumor type, contrast, image modality and also in other factors. To meet up all the challenges, a novel classification method is introduced using segmentation and machine learning approaches. Initially, the required images are collected from benchmark data sources. The input images are undergone for pre-processing stage, where it is done via “Contrast Limited Adaptive Histogram Equalization (CLAHE) and filtering methods”. Further, the pre-processed imagesare given as input to two classifier models as “Residual Network (ResNet) and Gated Recurrent Unit (GRU)”, in which the model provide the result as normal and abnormal images. In the second part, obtained abnormal image acts an input for segmentation step. In segmentation, it is needed to extract the relevant features by texture and spatial features. The resultant features are subjected for optimizing, where the optimal features are acquired through Adaptive Coyote Optimization Algorithm (ACOA). Then, the extracted features are fed into machine learning model like “Support Vector Machine (SVM), Artificial Neural Network (ANN), and Random Forest (RF)” to render the segmented image. Finally, the hybrid classification named Hybrid ResGRUis developed by integrating the ResNet and GRU, where the hyper parameters are tuned optimally using developed ACOA, thus it is used for classifying the abnormal image that belongs to benign stage or malignant stage. The experimental results are evaluated, and its performance is analyzed by various metrics. Hence, the proposed classification model ensures effective segmentation and classification performance.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3