Hybrid classification of XGBoost-based ADAM optimization for coronary artery disease diagnosis

Author:

Nagamani T.1,Logeswari S.2

Affiliation:

1. Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India

2. Department of Information Technology, Karpagam College of Engineering, Coimbatore, Tamilnadu, India

Abstract

A common cardiovascular illness with high fatality rates is coronary artery disease (CAD). Researchers have been exploring alternative methods to diagnose and assess the severity of CAD that are less invasive, cost-effective, and utilize noninvasive clinical data. Machine learning algorithms have shown promising and potential results. Accordingly, this study focuses on assisting medical practitioners with CAD detection by using a hybrid classification system combining XGBoost and Adam optimization. The primary approach incorporates One-Hot encoding to transform categorical attributes within the dataset, enhancing the precision of predictions. The secondary approach constitutes a hybrid classification model integrating XGBoost and employing Adam optimizations for CAD detections. The efficacy of the recommended method is assessed using the cleveland, Hungarian, and Statlog heart-disease data sets. The proposed system and the standard Grid and Random Search classifiers are compared. The experimental outcomes indicate that the suggested model achieves a notable prediction accuracy of 94.19%. This represents an improvement of 7 to 8% over the existing grid search algorithm and 2 to 3% improvement over the random search algorithm for the above all datasets. Hence, the proposed system can be a valuable tool for identifying CAD patients, offering enhanced prediction accuracy.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Breast Cancer Prediction Using Logistic Regression and Machine Learning Techniques;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3