Feature interaction and two-stage cross-modal fusion for RGB-D salient object detection

Author:

Yu Ming1,Liu Jiali1,Liu Yi1,Yan Gang1

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, Tianjin, China

Abstract

Most existing RGB-D salient object detection (SOD) methods extract features of both modalities in parallel or adopt depth features as supplementary information for unidirectional interaction from depth modality to RGB modality in the encoder stage. These methods ignore the influence of low-quality depth maps, and there is still room for improvement in effectively fusing RGB features and depth features. To address the above problems, this paper proposes a Feature Interaction Network (FINet), which performs bi-directional interaction through feature interaction module (FIM) in the encoder stage. The feature interaction module is divided into two parts: depth enhancement module (DEM) filters the noise in the depth features through the attention mechanism; and cross enhancement module (CEM) effectively interacts RGB features and depth features. In addition, this paper proposes a two-stage cross-modal fusion strategy: high-level fusion adopts the semantic information of high level for coarse localization of salient regions, and low-level fusion makes full use of the detailed information of low level through boundary fusion, and then we progressively refine high-level and low-level cross-modal features to obtain the final saliency prediction map. Extensive experiments show that the proposed model achieves better performance than eight state-of-the-art models on five standard datasets.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3