Piano automatic transcription based on transformer

Author:

Wang Yuan1

Affiliation:

1. School of Music, NanJing XiaoZhuang University, Nanjing, China

Abstract

Recent years, research on automatic music transcription has made significant progress as deep learning techniques have been validated to demonstrate strong performance in complex data applications. Although the existing work is exciting, they all rely on specific domain knowledge to enable the design of model architectures and training modes for different tasks. At the same time, the noise generated in the process of automatic music transcription data collection cannot be ignored, which makes the existing work unsatisfactory. To address the issues highlighted above, we propose an end-to-end framework based on Transformer. Through the encoder-decoder structure, we realize the direct conversion of the spectrogram of the collected piano audio to MIDI output. Further, to remove the impression of environmental noise on transcription quality, we design a training mechanism mixed with white noise to improve the robustness of our proposed model. Our experiments on the classic piano transcription datasets show that the proposed method can greatly improve the quality of automatic music transcription.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3