Optimal weight random forest ensemble with Fuzzy C-means cluster-based subsampling for carbon price forecasting

Author:

Zhang Yuhua1,Li Yuerong,Che Jinxing1

Affiliation:

1. School of Science, Nanchang Institute of Technology, Nanchang, Jiangxi, China; Key Laboratory of Engineering Mathematics and Advanced Computing, Nanchang Institute of Technology, Nanchang, Jiangxi, China

Abstract

Accurate prediction of carbon price is of great value for production, operation, investment decisions and the establishment of carbon pricing mechanism. However, the large amount of data often limits the application of learning model with good predictive performance in carbon price prediction. Therefore, the development of learning algorithms with low computational complexity has become a research hotspot. Among them, subsampling integration technology is an effective method to reduce the computational complexity. However, lack of data representativeness in subsamples and ignorance of differences among submodels inhibit the prediction performance of the subsampled ensemble model. This project proposes an optimal weight random forest ensemble model with cluster-based subsampling (FCM-OWSRFE) for carbon price forecasting. Firstly, Fuzzy C-means cluster-based subsampling to ensure the data representativeness of subsamples. Secondly, a series of sub-random forest models are built based on subsamples with data representativeness. Finally, an optimal weight ensemble model from these sub-models is derived. To verify the validity of the model, we test FCM-OWSRFE model with the carbon price of Guangzhou Emission Exchange and the carbon price of Hubei Carbon Emission Exchange, respectively. Experimental results show that Fuzzy C-means cluster-based subsampling and the optimal weight scheme can efficiently improve the prediction performance of the subsampled random forest ensemble model.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3