Enhancing the feature selection by employing improved optimization with Simulated Annealing Algorithm for dimensionality reduction in intrusion detection dataset

Author:

Arulmurugan A.1,Jose Moses G.2,Gandhi Ongole3,Sheshikala M.4,Arthie A.5

Affiliation:

1. Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, India

2. Department of Computer Science & Engineering (CS), School of Engineering, Malla Reddy University, Hyderabad, India

3. Department of Computer Science & Engineering, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India

4. School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana

5. Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, India

Abstract

In the current scenario, feature selection (FS) remains one of the very important functions in machine learning. Decreasing the feature set (FSt) assists in enhancing the classifier’s accuracy. Because of the existence of a huge quantity of data within the dataset (DS), it remains a colossal procedure for choosing the requisite features out of the DS. Hence, for resolving this issue, a new Chaos Quasi-Oppositional-based Flamingo Search Algorithm with Simulated Annealing Algorithm (CQOFSASAA) has been proffered for FS and for choosing the optimum FSt out of the DSs, and, hence, this lessens the DS’ dimension. The FSA technique can be employed for selecting the optimal feature subset out of the DS. Generalized Ring Crossover has been as well embraced for selecting the very pertinent features out of the DS. Lastly, the Kernel Extreme Learning Machine (KELM) classifier authenticates the chosen features. This proffered paradigm’s execution has been tested by standard DSs and the results have been correlated with the rest of the paradigms. From the experimental results, it has been confirmed that this proffered CQOFSASAA attains 93.74% of accuracy, 92% of sensitivity, and 92.1% of specificity.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3