Improving entity linking by combining semantic entity embeddings and cross-attention encoder

Author:

Li Shi1,Zhang Yongkang1

Affiliation:

1. School of Computer and Control Engineering, Northeast Forestry University, Hexing Road, Xiangfang District, Harbin City, Heilongjiang Prov., China

Abstract

Entity linking is an important task for information retrieval and knowledge graph construction. Most existing methods use a bi-encoder structure to encode mentions and entities in the same space, and learn contextual features for entity linking. However, this type of system still faces some problems: (1) the entity embedding part of the model only learns from the local context of the target entity, which is too unique for entity linking model to learn the context commonality of information; (2) the entity disambiguation part only uses similarity calculation once to determine the target entity, resulting in insufficient interaction between the mentions and candidate entities, and ineffective recall of real entities. We propose a new entity linking model based on graph neural network. Different from other bi-encoder retrieval systems, this paper introduces a fine-grained semantic enhancement information into the entity embedding part of the bi-encoder to reduce the specificity of the model. Then, the cross-attention encoder is used to re-rank the target mention and each candidate entity after the entity retrieval model. Experimental results show that although the model is not optimal in inference speed, it outperforms all baseline methods on the AIDA-CoNLL dataset, and has good generalization effects on four datasets in different fields such as MSNBC and ACE2004.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference37 articles.

1. Ayoola T. , Tyagi S. , Fisher J. , Christodoulopoulos C. , Pierleoni A. , ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking. arXiv preprint arXiv:2207.04108 (2022).

2. Basaldella M. , Liu F. , Shareghi E. , Collier N. , COMETA: A corpus for medical entity linking in the social media. arXiv preprint arXiv:2010.03295 (2020).

3. EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs;Dubey;In The Semantic Web – ISWC,2018

4. De Cao N. , Izacard G., Riedel S. and Petroni F., Autoregressive entity retrieval. arXiv preprint arXiv:2010.00904 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3