Automated Tuberculosis classification using Egret Swarm Optimization with deep learning based fusion model on chest X-ray images

Author:

Manivannan K.1,Sathiamoorthy S.2

Affiliation:

1. Arignar Anna Government Arts and Science College, Villupuram, India

2. Annamalai University PG Extension Centre, Villupuram, India

Abstract

In the last decades, Tuberculosis (TB) can be considered a serious illness affecting people over the globe and it leads to mortality when left untreated. Chest X-Ray (CXR) is the topmost selection for the recognition of pulmonary diseases in hospitals since it can be cost-efficient and easily available in many nations. But, manual CXR image screening is a huge load for radiologists, which results in a maximum inter-observer discrepancy rate. At present, Computer-Aided Detection (CAD) is a powerful imaging equipment for detecting and screening dangerous ailments. In recent times, Deep Learning (DL) based CAD schemes have demonstrated positive outcomes in the recognition of TB diseases. This study introduces an Egret Swarm Optimization Algorithm with Deep Feature Fusion based Tuberculosis Classification (ESOA-DFFTC) technique on CXR Images. The presented ESOA-DFFTC technique utilizes feature fusion and tuning processes for the classification of TB. To accomplish this, the ESOA-DFFTC model first exploits the Gaussian Filtering (GF) approach for image denoising purposes. Next, the ESOA-DFFTC model performs a feature fusion process using three DL models namely ResNeXt-50, MobileNetv2, and Xception. To enhance the achievement of the DL models, the ESOA-based hyperparameter optimizer is implemented in the study. For TB classification, the ESOA-DFFTC methodology uses an Arithmetic Optimization Algorithm (AOA) with Weight-Dropped Long Short-Term Memory (WDLSTM) methodology. The investigational output of the ESOA-DFFTC system was examined on a benchmark medical imaging dataset. A wide comparative investigation stated the greater achievement of the ESOA-DFFTC system over other current algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3