Erythropoetin can partially restore cigarette smoke induced effects on Adipose derived Stem Cells

Author:

Kükrek Haydar1,Aitzetmüller Matthias1,Vodiškar Mateja1,Moog Philipp1,Machens Hans-Günther1,Duscher Dominik1

Affiliation:

1. Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

Abstract

INTRODUCTION: Adipose derived Stem Cells (ASCs) have been proven to play a key role in tissue regeneration. However, exposure to large amounts of cigarette smoke can drastically diminish their function. Erythropoetin (EPO), can modulate cellular response to injury. Therefore, we investigated the ability of EPO to restore the regenerative function and differentiation capacity of ASCs. MATERIAL AND METHODS: Human ASCs were isolated from abdominoplasty samples using standard isolation procedures. Cell identity was established by means of Fluorescence Activated Cell Scanning. Subsequently, isolated ASCs were cultivated with cigarette smoke extract both with and without EPO. Parameters investigated included cellular metabolic activity, adipogenic and osteogenic differentiation capacity, and in vitro wound closure capacity. For further enhancing wound closure, EPO was combined with Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) or Stromal Derived Factor-1 alpha (SDF-1 a). RESULTS: Cigarette smoke reduces adipogenic differentiation, the osteogenic differentiation capacity as well as the in vitro wound healing ability of human derived ASCs. EPO did not change metabolic activity of ASCs significantly. The addition of EPO could partially restore their function. The combination of EPO with GM-CSF or SDF-1 did not result in a synergistic effect regarding wound healing ability. CONCLUSION: Exposure to cigarette smoke significantly reduced the regenerative potential of ASCs. Treatment of ASCs exposed to cigarette smoke with EPO has the potential to partially restore their function.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3