Affiliation:
1. Department of Neurology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
Abstract
BACKGROUND: Circular RNA (circRNA) has been found to play an important role in the progression of many diseases, including ischemic stroke. However, the regulatory mechanism of circSEC11A in ischemic stroke progression need to further investigation. METHODS: Human brain microvascular endothelial cells (HBMECs) were stimulated by oxygen glucose deprivation (OGD). CircSEC11A, SEC11A mRNA and miR (microRNA)-29a-3p were quantified by quantitative real-time PCR (qRT-PCR). SEMA3A, BAX and BCL2 protein level was quantified by western blot. Oxidative stress, cell proliferation, angiogenesis and apoptosis abilities were gauged by oxidative stress assay kit, 5-Ethynyl-2’-Deoxyuridine (EdU) staining, tube formation assay and flow cytometry assays, respectively. Direct relationship between miR-29a-3p and circSEC11A or SEMA3A was validated by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS: CircSEC11A was upregulated in OGD-induced HBMECs. OGD promoted the oxidative stress and apoptosis and inhibited cell proliferation and angiogenesis, while circSEC11A knockdown relieved the effects. CircSEC11A functioned as the sponge for miR-29a-3p, and miR-29a-3p inhibitor reversed the effects of si-circSEC11A on OGD-induced HBMECs oxidative injuries. Moreover, SEMA3A served as the target gene of miR-29a-3p. MiR-29a-3p inhibition ameliorated OGD-induced HBMECs oxidative injuries, while SEMA3A overexpression rescued the impacts of miR-29a-3p mimic. CONCLUSION: CircSEC11A promoted the malignant progression in OGD-induced HBMECs through the mediation of miR-29a-3p/SEMA3A axis. This study has provided the new insight into the underlying application of circSEC11A in cell model of ischemic stroke.
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献