RhoA-LIMK Signaling Axis Reveals Rostral-Caudal Plane and Spatial Dysregulation in the Brain of Alzheimer’s Disease Mouse Models

Author:

Nik Akhtar Shayan1,Lu Qun12

Affiliation:

1. Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University. Greenville, NC, USA

2. The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, The Brody School of Medicine, East Carolina University, Greenville, NC, USA

Abstract

Background: RhoA signaling is widely reported to be dysregulated in Alzheimer’s disease (AD), but its therapeutic targeting demonstrated mixed outcomes. We hypothesize that the activation and inactivation states of RhoA and LIMK are different in the cortex and in subregions of hippocampus along the rostral-caudal dimensions. Objective: We intended to elucidate the plane and spatial dependent RhoA signaling in association with AD. Methods: We applied antibody pRhoA that recognizes an inactive state of RhoA (S188 phosphorylation) and antibody pLIMK against an active state of LIMK (T508 phosphorylation) to investigate RhoA signaling in wildtype (WT) and triple transgenic AD (3xTg-AD) mouse model. We prepared serial sections from the rostral to caudal coronal planes of the entire mouse brain followed by immunofluorescence staining with pRhoA and pLIMK antibodies. Results: Both pRhoA and pLIMK elicited a shift of expression pattern from rostral to caudal planes. Additionally, pRhoA demonstrated dynamic redistribution between the nucleus and cytoplasm. pLIMK did not show such nucleus and cytoplasm redistribution but the expression level was changed from rostral to caudal planes. At some planes, pRhoA showed an increasing trend in expression in the cortex but a decreasing trend in the dentate gyrus of the 3xTg-AD mouse hippocampus. pLIMK tends to decrease in the cortex but increase in the dentate gyrus of 3xTg-AD mouse hippocampus. Conclusions: RhoA activation is dysregulated in both human and mouse AD brains, and the RhoA-LIMK signaling axis reveals spatial dysregulation along the rostral-caudal plane dimensions.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3