Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery

Author:

Jannasch Anett1,Rix Jan2,Welzel Cindy1,Schackert Gabriele3,Kirsch Matthias34,König Ulla5,Koch Edmund2,Matschke Klaus1,Tugtekin Sems Malte1,Dittfeld Claudia1,Galli Roberta6

Affiliation:

1. Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany

2. Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany

3. Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

4. Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Seesen, Germany

5. Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany

6. Department of Medical Physics and Biomedical Technology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany

Abstract

BACKGROUND: Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE: BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS: Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young’s modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS: SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young’s modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION: BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3