Analytical learning classifier based on predefined evenly-distributed class centroids

Author:

Hu Haiping1,Huo Wei1,Yan Yingying1,Zhu Qiuyu2

Affiliation:

1. College of Sciences, ShangHai University, Shanghai, China

2. School of Communication and Information Engineering, ShangHai University, Shanghai, China

Abstract

For the pattern recognition, most classification models are solved iteratively, except for Linear LDA, KLDA and ELM etc. In this paper, a nonlinear classification network model based on predefined evenly-distributed class centroids (PEDCC) is proposed. Its analytical solution can be obtained and has good interpretability. Using the characteristics of maximizing the inter-class distance of PEDCC and derivative weighted minimum mean square error loss function to minimize the intra-class distance, we can not only realize the effective nonlinearity of the network, but also obtain the analytical solution of the network weight. Then, the sample is classified based on GDA. In order to further improve the performance of classification, PCA is used to reduces the dimensionality of the original sample, meanwhile, the CReLU activation function are adopted to enhances the expression ability of the features. The network transforms the samples into the higher dimensional feature space through the weighted minimum mean square error, so as to find a better separation hyperplane. In experiments, the feasibility of the network structure is verified from pure linear 𝑾, 𝑾+Tanh, and PCA+𝑾+Tanh respectively on many small data sets and large data sets, and compared with SVM and ELM in terms of training speed and recognition rate. The results show that, in general, this model has advantages on small data set both in recognition accuracy and training speed, while it has advantages in training speed on large data sets. Finally, by introducing a multi-stage network structure based on the latent feature norm, the classifier network can further significantly improve the classification performance, the recognition rate of small data sets is effectively improved and much higher than that of existing methods, while the recognition rate of large data sets is similar to that of SVM.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3