CCTSDB dataset enhancement based on a cross-augmentation method for image datasets

Author:

Lin Xinrui12,Wang Wei3,Zhu Xiaohui1,Yue Yong1

Affiliation:

1. Xi’an Jiaotong-liverpool University, Suzhou, Jiangsu, China

2. The University of Edinburgh, Edinburgh, UK

3. Hebei Normal University, Shijiazhuang, Hebei, China

Abstract

In the digital era, the rapid advancement of artificial intelligence has put a spotlight on target detection, especially in traffic settings. This area of study is pivotal for crucial projects like autonomous vehicles, road monitoring, and traffic sign recognition. However, existing Chinese traffic datasets lack comprehensive benchmarks for traffic signs and signals, and foreign datasets do not match Chinese traffic conditions. Manually annotating a large-scale dataset tailored for Chinese traffic conditions presents a significant challenge. This study addresses this gap by proposing a cross-augmentation method for image datasets. We utilized YOLOX for target detection and trained models on the BDD100K dataset, achieving an impressive mAP of 60.25%, surpassing most algorithms. Leveraging transfer learning, we enhanced the CCTSDB dataset, creating the ACCTSDB dataset, which includes annotations for common traffic objects and Chinese traffic signs. Using YOLOX, we trained a traffic detector tailored for Chinese traffic scenarios, achieving an mAP of 75.79%. To further validate our approach, we conducted experiments on the TT100K dataset and successfully introduced the ATT100K dataset. Our methodology is poised to alleviate the limitations of manually annotating image datasets. The proposed ACCTSDB dataset and ATT100K dataset are expected to compensate for the lack of large-scale, multi-class traffic datasets in China.

Publisher

IOS Press

Reference23 articles.

1. R. Girshick, J. Donahue, T. Darrell and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587.

2. R. Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448.

3. S. Ren, K. He, R. Girshick and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in Neural Information Processing Systems 28 (2015).

4. K. He, G. Gkioxari, P. Dollár and R. Girshick, Mask r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969.

5. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3