Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning

Author:

Zhang Xin-Yue1,Huang Zheng1,Li Qing-Jie2,Zhong Guo-Qiang134,Meng Jian-Jun5,Wang Dong-Xiao1,Tu Rong-Hui346,Hong-Wen 56

Affiliation:

1. Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China

2. Department of Cardiology, Second Affiliated Hospital, Guang Xi Medical University, Nanning, China

3. Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China

4. Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China

5. Geriatric Healthcare Center, First Affiliated Hospital, Guang Xi Medical University, Nanning, China

6. Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China

Abstract

BACKGROUND: Myocardial inflammation mediated by toll-like receptor 4 (TLR4) plays an active role in myocardial ischemia/reperfusion (I/R) injury. Studies show that heat shock protein 90 (HSP90) is involved in ischemic postconditioning (IPostC) cardioprotection. This study investigates the roles of TLR4 and HSP90 in IPostC. METHODS: Rats were subjected to 30 min ischemia, then 2 h reperfusion. IPostC was applied by three cycles of 30 s reperfusion, then 30 s reocclusion at reperfusion onset. Sixty rats were randomly divided into four groups: sham, I/R, IPostC, and geldanamycin (GA, HSP90 inhibitor, 1 mg/kg) plus IPostC (IPostC + GA). RESULTS: IPostC significantly reduced I/R-induced infarct size (40.2±2.1% versus 28.4±2.4%; P < 0.05); the release of cardiac Troponin T, creatine kinase-MB, and lactate dehydrogenase (191.5±3.1 versus 140.6±3.3 pg/ml, 3394.6±132.7 versus 2880.7±125.5 pg/ml, 2686.2±98.6 versus 1848.8±90.1 pg/ml, respectively; P < 0.05); and cardiomyocyte apoptosis (40.3±2.2% versus 27.0±1.6%; P < 0.05). Further, local and circulating IL-1β, IL-6, TNF-α, and ICAM-1 levels decreased; TLR4 expression and nuclear factor-KB (NF-κB) signaling decreased; and cardiac HSP90 expression increased. Blocking HSP90 function with GA inhibited IPostC protection and anti-inflammation, suggesting that IPostC has a HSP90-dependent anti-inflammatory effect. CONCLUSION: HSP90 may play a role in IPostC-mediated cardioprotection by inhibiting TLR4 activation, local and systemic inflammation, and NF-kB signaling.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3