A new rough set based bayesian classifier prior assumption

Author:

Feng Naidan1,Liang Yongquan1

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China

Abstract

 Aiming at the imprecise and uncertain data and knowledge, this paper proposes a novel prior assumption by the rough set theory. The performance of the classical Bayesian classifier is improved through this study. We applied the operations of approximations to represent the imprecise knowledge accurately, and the concept of approximation quality is first applied in this method. Thus, this paper provides a novel rough set theory based prior probability in classical Bayesian classifier and the corresponding rough set prior Bayesian classifier. And we chose 18 public datasets to evaluate the performance of the proposed model compared with the classical Bayesian classifier and Bayesian classifier with Dirichlet prior assumption. Sufficient experimental results verified the effectiveness of the proposed method. The mainly impacts of our proposed method are: firstly, it provides a novel methodology which combines the rough set theory with the classical probability theory; secondly, it improves the accuracy of prior assumptions; thirdly, it provides an appropriate prior probability to the classical Bayesian classifier which can improve its performance only by improving the accuracy of prior assumption and without any effect to the likelihood probability; fourthly, the proposed method provides a novel and effective method to deal with the imprecise and uncertain data; last but not least, this methodology can be extended and applied to other concepts of classical probability theory, which providing a novel methodology to the probability theory.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference33 articles.

1. Naive bayes classifiers;Murphy;University of British Columbia,2006

2. Spike-and-slab priors for function selection in structured additive regression models;Scheipl;Journal of the American Statistical Association,2012

3. Bayesian network classifiers;Friedman;Machine Learning,1997

4. Inferring causal impact using bayesian structural timeseries models;Brodersen;The Annals of Applied Statistics,2015

5. Probabilistic neural networks;Specht;Neural Networks,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep dynamic neural network model and its application for ECG classification;Journal of Intelligent & Fuzzy Systems;2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3