Underestimation of self-tilt increases in reduced gravity conditions

Author:

Meskers Arjan J. H.1,Houben Mark M. J.1,Pennings Helena J. M.1,Clément Gilles2,Groen Eric L.1

Affiliation:

1. TNO, Soesterberg, The Netherlands

2. Lyon Neuroscience Research Center, Bron, France

Abstract

BACKGROUND: During large angles of self-tilt in the roll plane on Earth, measurements of the subjective visual vertical (SVV) in the dark show a bias towards the longitudinal body axis, reflecting a systematic underestimation of self-tilt. OBJECTIVE: This study tested the hypothesis that self-tilt is underestimated in partial gravity conditions, and more so at lower gravity levels. METHODS: The SVV was measured in parabolic flight at three partial gravity levels: 0.25, 0.50, and 0.75 g. Self-tilt was varied amongst 0, 15, 30, and 45 deg, using a tiltable seat. The participants indicated their SVV by setting a linear array of dots projected inside a head mounted display to the perceived vertical. The angles of participants’ body and head roll tilt relative to the gravito-inertial vertical were measured by two separate inertial measurement units. RESULTS: Data on six participants were collected. Per G-level, a regression analysis was performed with SVV setting as dependent variable and head tilt as independent variable. The latter was used instead of chair tilt, because not all the participants’ heads were aligned with their bodies. The estimated regression slopes significantly decreased with smaller G-levels, reflecting an increased bias of the SVV towards the longitudinal body axis. On average, the regression slopes were 0.95 (±0.38) at 0.75 g; 0.84 (±0.22) at 0.5 g; and 0.63 (±0.33) at 0.25 g. CONCLUSIONS: The results of this study show that reduced gravity conditions lead to increased underestimation of roll self-tilt.

Publisher

IOS Press

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology,General Neuroscience

Reference28 articles.

1. Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links;Aubert;Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin,1861

2. Rapid adaptation of multisensory integration in vestibular pathways;Carriot;Frontiers in Systems Neuroscience,2015

3. A case study of human roll tilt perception in hypogravity;Clark;Aerospace Medicine and Human Performance,2017

4. Multisensory Processing in Spatial Orientation: An Inverse Probabilistic Approach;Clemens;Journal of Neuroscience,2011

5. Perception of longitudinal body axis in microgravity during parabolic flight;Clément;Neurosci Lett,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3