Metabolomic Analysis of Plasma in Huntington’s Disease Transgenic Sheep (Ovis aries) Reveals Progressive Circadian Rhythm Dysregulation

Author:

Spick Matt1,Hancox Thomas P.M.2,Chowdhury Namrata R.3,Middleton Benita3,Skene Debra J.3,Morton A. Jennifer4

Affiliation:

1. Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK

2. School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK

3. Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

4. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Abstract

Background: Metabolic abnormalities have long been predicted in Huntington’s disease (HD) but remain poorly characterized. Chronobiological dysregulation has been described in HD and may include abnormalities in circadian-driven metabolism. Objective: Here we investigated metabolite profiles in the transgenic sheep model of HD (OVT73) at presymptomatic ages. Our goal was to understand changes to the metabolome as well as potential metabolite rhythm changes associated with HD. Methods: We used targeted liquid chromatography mass spectrometry (LC-MS) metabolomics to analyze metabolites in plasma samples taken from female HD transgenic and normal (control) sheep aged 5 and 7 years. Samples were taken hourly across a 27-h period. The resulting dataset was investigated by machine learning and chronobiological analysis. Results: The metabolic profiles of HD and control sheep were separable by machine learning at both ages. We found both absolute and rhythmic differences in metabolites in HD compared to control sheep at 5 years of age. An increase in both the number of disturbed metabolites and the magnitude of change of acrophase (the time at which the rhythms peak) was seen in samples from 7-year-old HD compared to control sheep. There were striking similarities between the dysregulated metabolites identified in HD sheep and human patients (notably of phosphatidylcholines, amino acids, urea, and threonine). Conclusion: This work provides the first integrated analysis of changes in metabolism and circadian rhythmicity of metabolites in a large animal model of presymptomatic HD.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3