Influence of brick laying height on biomechanical load in masons: Cross-sectional field study with technical measurements

Author:

Brandt Mikkel1,Bláfoss Rúni12,Jakobsen Markus Due1,Samani Afshin3,Ajslev Jeppe Z.N.1,Madeleine Pascal3,Andersen Lars L.13

Affiliation:

1. National Research Centre for the Working Environment, Copenhagen, Denmark

2. Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

3. ExerciseTech, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark

Abstract

BACKGROUND: Work-related musculoskeletal disorders (WMSDs) located in the low back and neck/shoulder regions are major concerns for both workers, workplaces, and society. Masons are prone to WMSD, because their work is characterized by repetitive work and high physical workload. However, the knowledge on the physical workload during bricklaying is primarily based on subjective measurements. OBJECTIVE: This cross-sectional field study with technical measurements aimed to quantify physical workload in terms of muscular activity and degree of forward bending during bricklaying at different working heights among masons, i.e., knee, hip, shoulder, and above shoulder height. METHODS: Twelve male (36.1±16.1 years) experienced masons participated in a cross-sectional field study with technical measurements. Surface electromyography from erector spinae longissimus and upper trapezius muscles and an inertial measurement unit-sensor placed on the upper back were used to assess the physical workload (level of muscle activation and degree of forward bending) different bricklaying heights. Manual video analysis was used to determine duration of work tasks, frequency, type, and working height. The working heights were categorized as ‘knee’, ‘hip’, ‘shoulder’, and ‘above shoulder’. The 95 percentiles of the normalized Root Mean Square (RMSn) values were extracted assess from erector spinae and trapezius recordings to assess strenuous level muscle of muscle activation. RESULTS: The RMSn of dominant erector spinae muscle increased from hip- to shoulder height (from 26.6 to 29.6, P < 0.0001), but not from hip to above shoulder height and decreased from hip to knee height (from 26.6 to 18.9, P < 0.0001). For the dominant trapezius muscle, the RMSn increased from hip- to shoulder- and above shoulder height (from 13.9 to 19.7 and 24.0, respectively, P < 0.0001) but decreased from hip- to knee height (from 13.9 to 11.5, P < 0.0001). Compared to hip height (27.9°), an increased forward bending was detected during bricklaying at knee height (34.5°, P < 0.0001) and a decreased degree of forward bending at shoulder- and above shoulder height (17.6° and 12.5°, P < 0.0001, respectively). CONCLUSION: Based on technical measurements, bricklaying at hip height showed the best compromise between muscular load and degree of forward bending. This study contributes to the development of the work environment for masons and can help guide preventive initiatives to reduce physical workload.

Publisher

IOS Press

Reference74 articles.

1. Economic impact of musculoskeletal disorders (MSDs) on work in Europe;Bevan;Best Pract Res Clin Rheumatol,2015

2. The burden of musculoskeletal disease–a global perspective;Brooks;Clin Rheumatol,2006

3. Costs by industry and diagnosis among musculoskeletal claims in a state workers compensation system: 1999–2004.;Dunning;Am J Ind Med,2010

4. Work-related musculoskeletal disorders: the epidemiologic evidence and the debate;Punnett;JElectromyogrKinesiol,2004

5. The prevalence of musculoskeletal symptoms in the construction industry: a systematic review and meta-analysis;Umer;Int Arch Occup Environ Health,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3