Towards an Explainable AI-Based Tool to Predict Preterm Birth

Author:

Kyparissidis Kokkinidis Ilias1ORCID,Logaras Evangelos1ORCID,Rigas Emmanouil S.1ORCID,Tsakiridis Ioannis2ORCID,Dagklis Themistoklis2ORCID,Billis Antonis1ORCID,Bamidis Panagiotis D.1ORCID

Affiliation:

1. Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece

2. 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece

Abstract

Preterm birth (PTB) is defined as delivery occurring before 37 weeks of gestation. In this paper, Artificial Intelligence (AI)-based predictive models are adapted to accurately estimate the probability of PTB. In doing so, pregnant women’ objective results and variables extracted from the screening procedure in combination with demographics, medical history, social history, and other medical data are used. A dataset consisting of 375 pregnant women is used and a number of alternative Machine Learning (ML) algorithms are applied to predict PTB. The ensemble voting model produced the best results across all performance metrics with an area under the curve (ROC-AUC) of approximately 0.84 and a precision–recall curve (PR-AUC) of approximately 0.73. An attempt to provide clinicians with an explanation of the prediction is performed to increase trustworthiness.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3