Affiliation:
1. Department of Software Engineering, University of Granada, Spain
Abstract
Association rules are one of the most used data mining techniques. The first proposals have considered relations over time in different ways, resulting in the so-called Temporal Association Rules (TAR). Although there are some proposals to extract association rules in OLAP systems, to the best of our knowledge, there is no method proposed to extract temporal association rules over multidimensional models in these kinds of systems. In this paper we study the adaptation of TAR to multidimensional structures, identifying the dimension that establishes the number of transactions and how to find time relative correlations between the other dimensions. A new method called COGtARE is presented as an extension of a previous approach proposed to reduce the complexity of the resulting set of association rules. The method is tested in application to COVID-19 patients data.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献