Optimization of Bayesian algorithms for multi-threshold image segmentation

Author:

Tian Qiaoyu,Xu Wen,Xu Jin

Abstract

The Bayesian optimization algorithm uses Bayesian networks as the probability model of its solution space. Although the research on this algorithm has steadily developed, there are still some problems in its application process, such as excessive computational complexity. To solve various problems in Bayesian algorithm, reduce its computational complexity, and enable it to better achieve image segmentation. The study chooses to improve the Bayesian algorithm on the basis of immune algorithm, and solves the problem of computational complexity by reducing the number of Bayesian network construction times, thereby improving the individual fitness of the population. Through simulation experiments, it has been shown that the average number of times the improved Bayesian algorithm reaches the optimal value is 30, which is higher than the traditional algorithm’s 20 times. Its excellent optimization ability searches for the optimal threshold to complete image segmentation. The improved Bayesian optimization algorithm based on immune algorithm can effectively reduce computational complexity, shorten computational time, and improve convergence. And applying Bayesian algorithm to image segmentation has broadened the application field of the algorithm and found new exploration directions for image segmentation.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3