Parallel Algorithms for Minimal Nondeterministic Finite Automata Inference

Author:

Jastrzab Tomasz1,Czech Zbigniew J.1,Wieczorek Wojciech2

Affiliation:

1. Silesian University of Technology, Gliwice, Poland. Tomasz.Jastrzab@polsl.pl, Zbigniew.Czech@polsl.pl

2. University of Bielsko-Biała, Bielsko-Biała, Poland. wwieczorek@ath.bielsko.pl

Abstract

The goal of this paper is to develop the parallel algorithms that, on input of a learning sample, identify a regular language by means of a nondeterministic finite automaton (NFA). A sample is a pair of finite sets containing positive and negative examples. Given a sample, a minimal NFA that represents the target regular language is sought. We define the task of finding an NFA, which accepts all positive examples and rejects all negative ones, as a constraint satisfaction problem, and then propose the parallel algorithms to solve the problem. The results of comprehensive computational experiments on the variety of inference tasks are reported. The question of minimizing an NFA consistent with a learning sample is computationally hard.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust models to infer flexible nondeterministic finite automata;Journal of Computational Science;2024-07

2. Inference of Over-Constrained NFA of Size $$k+1$$ to Efficiently and Systematically Derive NFA of Size k for Grammar Learning;Computational Science – ICCS 2023;2023

3. Taking Advantage of a Very Simple Property to Efficiently Infer NFAs;2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI);2022-10

4. GA and ILS for Optimizing the Size of NFA Models;Metaheuristics and Nature Inspired Computing;2022

5. Optimized models and symmetry breaking for the NFA inference problem;2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI);2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3