A Novel Ensemble Model - The Random Granular Reflections

Author:

Artiemjew Piotr1,Ropiak Krzysztof1

Affiliation:

1. Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Olsztyn, Poland. artem@matman.uwm.edu.pl, kropiak@matman.uwm.edu.pl

Abstract

One of the most popular families of techniques to boost classification are Ensemble methods. Random Forests, Bagging and Boosting are the most popular and widely used ones. This article presents a novel Ensemble Model, named Random Granular Reflections. The algorithm used in this new approach creates an ensemble of homogeneous granular decision systems. The first step of the learning process is to take the training system and cover it with random homogeneous granules (groups of objects from the same decision class that are as little indiscernible from each other as possible). Next, granular reflection is created, which is finally used in the classification process. Results obtained by our initial experiments show that this approach is promising and comparable with other tested methods. The main advantage of our new method is that it is not necessary to search for optimal parameters while looking for granular reflections in the subsequent iterations of our ensemble model.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Streaming in Concept-Dependent Granulation;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Improving the credibility of the extracted position from a vast collection of job offers with machine learning ensemble methods;Technical Sciences;2023-09-19

3. Accelerating concept-dependent granulation technique using data decomposition;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

4. Rough Sets Turn 40: From Information Systems to Intelligent Systems;Annals of Computer Science and Information Systems;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3