Using the integrated neural network of radial basis function (RBF) via optimization algorithms to estimate pile settlement range

Author:

Jiang Ruiyang1

Affiliation:

1. School of Architecture, Shangqiu Polytechnic, Shangqiu, Henan, China

Abstract

The Pile motion seems to be one of the most critical in pile failure that requires appraisal before installing piles. The variables to estimate the Pile Settlement parameter, there are several methods. Among existing theoretical ways to investigate the pile movement mathematically, most studies have tried to model the piles’ settlement overloading period using artificial intelligence. Thus, this research has used the Artificial Neural Network to have the actual status of pile motion vertically over the loading periods dynamically and statically. Therefore, the present research has utilized the Radial Basis Function Neural Network joint with Equilibrium Optimizer Algorithm and Grasshopper Optimization Algorithm to figure out the optimum number of neurons within the hidden layer. Kuala Lumpur’s Klang Valley Mass Rapid Transit transportation network, Malaysia, opted to model the piles’ settlement and earth properties via the proposed hybrid RBF-GOA and RBF-EOA frameworks. By modeling both frameworks, the error index of RMSE for RBF-GOA and HRBF-EOA were gained to 0.6312 and 0.5947, respectively. However, the VAF indicator showed identical results of the rates 96.98 and 97.33, respectively. Overly, the RBF-EOA represented better than RBF-GOA by little efficiency.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal regression analysis for estimating the settlement of the deep foundations socketed into rock;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-06-27

2. Settlement estimation of the piles socketed into rock employing hybrid ANFIS systems;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3