Multi-objective genetic algorithm for mobile robot path planning in industrial automation

Author:

Suresh K.S.1,Ravichandran K.S.1,Venugopal S.2

Affiliation:

1. School of Computing, SASTRA Deemed University, TamilNadu, India

2. Director, National Institute of Technology, Nagaland

Abstract

Due to the problem’s high level of complexity, the optimization strategies used for the mobile robot path planning problem are quite expensive. The Mobile Robot Path Search based on a Multi-objective Genetic Algorithm (MRPS-MOGA) is suggested as a solution to the complexity. The MRPS-MOGA resolves path planning issues while taking into account a number of different factors, including safety, distance, smoothness, trip duration, and a collision-free path. In order to find the best approach, the suggested MRPS-MOGA takes into account five main objectives. The MOGA is used to pick the best path from a variety of viable options. Paths produced at random are used to initialise the population with viable paths. By using objective functions for various objectives, the fitness value is assessed for the quantity of potential candidate paths. In order to achieve diversity in the population, another GA operator mutation is carried out at random on the sequence. Once more, the individual fitness criterion is supported in order to derive the best path from the population. With various situations, an experimental research of the suggested MRPS-MOGA is conducted. The outcome shows that the suggested MRPS-MOGA performs better when choosing the best path with the least amount of time complexity. MRPS-MOGA is more effective than the currently used approaches, according to the experimental analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3