An exact inversion method for multi-input-single-output decomposable TS fuzzy systems

Author:

Ulu Cenk1

Affiliation:

1. Mechatronics Engineering Department, Faculty of Mechanical Engineering, Yildiz Technical University, Besiktas, Istanbul, Turkey

Abstract

Almost all exact inversion methods provide inverse solutions for only one input variable of fuzzy systems. These methods have certain limitations on the fuzzy system structure such as monotonic rule bases, singleton rule consequents, and invertibility check. These requirements limit the modeling capabilities of the fuzzy systems and also may result in poor application performances. In this study, an exact analytical inversion method is presented for multi-input-single-output decomposable TS fuzzy systems with either singleton or linear consequents. In the proposed method, fuzzy system structures do not need to have monotonic rule bases, singleton rule consequents, or any invertibility conditions. Thus, more flexible fuzzy systems can be used in inverse model based applications. The proposed method provides a simple and systematic way to obtain unique inverse solutions of all input variables simultaneously with respect to any desired system output value. For this purpose, an inversion trajectory approach that guarantees the existence and uniqueness of the inverse solutions is introduced. The inversion trajectory consists of a set of paths defined on the specific edges of universe of discourses of the decomposed fuzzy subsystems. Using this approach, the inverse definition of the overall fuzzy system can easily be derived only by inverting the related decomposed fuzzy subsystems on this inversion trajectory and then combining their inverse definitions. In this way, the inverse definition of the overall fuzzy system is obtained as consisting of analytical solutions of linear and quadratic equations for singleton and linear consequent cases, respectively. Simulation studies are given for the inversion of two and three-input-single-output fuzzy systems, and the exactness and effectiveness of the proposed method are demonstrated.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3