An IoT and Fuzzy aware e-Healthcare system using feature optimization tuned T-CNN with high dimensional data

Author:

Sudhagar D.1,ArokiaRenjit J.2

Affiliation:

1. Department of Information Technology, Jerusalem College of Engineering, Chennai, India

2. Department of Computer Science and Engineering, Jeppiaar Engineering College, Chennai, India

Abstract

Many real-time applications, including some emerging ones, rely on high-dimensional feature datasets. For simplifying the high-dimensional data, the various models are available by using the different feature optimization techniques, clustering and classification techniques. Even though the high-dimensional data is not handled effectively due to the increase in the number of features and the huge volume of data availability. In particular, the high-dimensional medical data needs to be handled effectively to predict diseases quickly. For this purpose, we propose a new Internet of Things and Fuzzy-aware e-healthcare system for predicting various diseases such as heart, diabetes, and cancer diseases effectively. The proposed system uses a newly proposed Intelligent Mahalanobis distance aware Fuzzy Weighted K-Means Clustering Algorithm (IMFWKCA) for grouping the high dimensional data and also applies a newly proposed Moth-Flame Optimization Tuned Temporal Convolutional Neural Network (MFO-TCNN) for predicting the diseases effectively. The experiments have been done by using the UCI Repository Machine Learning datasets and live streaming patient records for evaluating the proposed e-healthcare system and have proved as better than others by achieving better performance in terms of precision, recall, f-measure, and prediction accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. An introduction to variable and feature selection;Guyon;Journal of Machine Learning Research,2003

2. A survey onfilter techniques for feature selection in gene expression microarray analysis;Lazar;IEEE/ACM Transactions on Computational Biology and BioInformatics,2012

3. Wrappers for feature subset selection;Kohavi;Artificial Intelligence,1997

4. Regression Shrinkage and Selection Via the LASSO;Tibshirani;Journal of Statistical Social Service, B Statistics Methodology,1996

5. Accelerated gradient boosting;Biau;Machine Learning,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity-Reduced Variational Auto Encoders With Bayesian Optimization for Anomaly Detection in High-Dimensional Medical Data;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3