A dual-ways feature fusion mechanism enhancing active learning based on TextCNN

Author:

Shi Xuefeng1,Hu Min1,Ren Fuji2,Shi Piao1

Affiliation:

1. School of Computer and Information, Hefei University of Technology, Anhui, China

2. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, China

Abstract

Active Learning (AL) is a technique being widely employed to minimize the time and labor costs in the task of annotating data. By querying and extracting the specific instances to train the model, the relevant task’s performance is improved maximally within limited iterations. However, rare work was conducted to fully fuse features from different hierarchies to enhance the effectiveness of active learning. Inspired by the thought of information compensation in many famous deep learning models (such as ResNet, etc.), this work proposes a novel TextCNN-based Two ways Active Learning model (TCTWAL) to extract task-relevant texts. TextCNN takes the advantage of little hyper-parameter tuning and static vectors and achieves excellent results on various natural language processing (NLP) tasks, which are also beneficial to human-computer interaction (HCI) and the AL relevant tasks. In the process of the proposed AL model, the candidate texts are measured from both global and local features by the proposed AL framework TCTWAL depending on the modified TextCNN. Besides, the query strategy is strongly enhanced by maximum normalized log-probability (MNLP), which is sensitive to detecting the longer sentences. Additionally, the selected instances are characterized by general global information and abundant local features simultaneously. To validate the effectiveness of the proposed model, extensive experiments are conducted on three widely used text corpus, and the results are compared with with eight manual designed instance query strategies. The results show that our method outperforms the planned baselines in terms of accuracy, macro precision, macro recall, and macro F1 score. Especially, to the classification results on AG’s News corpus, the improvements of the four indicators after 39 iterations are 40.50%, 45.25%, 48.91%, and 45.25%, respectively.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3