Affiliation:
1. School of Computer Science, University of St Andrews, KY16 9SX St Andrews, UK
2. SCCH, Softwarepark 32a, 4232 Hagenberg, Austria
Abstract
Endometriosis is a complex, poorly understood, female health condition that can markedly reduce a woman’s quality of life. The gold-standard diagnostic method for Endometriosis is invasive laparoscopic surgery, which is costly, not timely, and comes with risks to the patient. We argue that the need for a non-invasive diagnosis procedure, higher quality of patient care and reduced diagnosis delay, can be fulfilled by advances and research to devise innovative computational solutions. To leverage computational and algorithmic techniques, enhanced data recording and sharing are vital. We discuss the potential benefits of using personalised computational healthcare on both the clinician and patient side, reducing the lengthy average diagnosis time (currently around 8 years).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献