Automatic Outlier Detection in Laboratory Result Distributions Within a Real World Data Network

Author:

Muñoz Monjas Aída1ORCID,Rubio Ruiz David12ORCID,Pérez-Rey David1ORCID,Palchuk Matvey2ORCID

Affiliation:

1. Biomedical Informatics Group, Universidad Politécnica de Madrid, Spain

2. TriNetX, LLC, Cambridge, MA, USA

Abstract

Laboratory data must be interoperable to be able to accurately compare the results of a lab test between healthcare organizations. To achieve this, terminologies like LOINC (Logical Observation Identifiers, Names and Codes) provide unique identification codes for laboratory tests. Once standardized, the numeric results of laboratory tests can be aggregated and represented in histograms. Due to the characteristics of Real World Data (RWD), outliers and abnormal values are common, but these cases should be treated as exceptions, excluding them from possible analysis. The proposed work analyses two methods capable of automating the selection of histogram limits to sanitize the generated lab test result distributions, Tukey’s box-plot method and a “Distance to Density” approach, within the TriNetX Real World Data Network. The generated limits using clinical RWD are generally wider for Tukey’s method and narrower for the second method, both greatly dependent on the values used for the algorithm’s parameters.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3