Electroacupuncture Enhances Cognition by Promoting Brain Glucose Metabolism and Inhibiting Inflammation in the APP/PS1 Mouse Model of Alzheimer’s Disease: A Pilot Study

Author:

Xu Anping1,Tang Yinshan2,Zeng Qingtao3,Wang Xin4,Tian Huiling1,Zhou You2,Li Zhigang1

Affiliation:

1. School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China

2. Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

3. Information Engineering Institute, Beijing Institute of Graphic Communication, Beijing, China

4. Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China

Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative disease, yet there is no effective treatment. Electroacupuncture (EA) is a complementary alternative medicine approach. In clinical and animal studies, EA promotes cognition in AD and vascular dementia. It has been previously reported that cognitive decline in AD might be closely related to reduced glucose intake in the brain. It is worth mentioning that the regions of glucose hypometabolism are usually found to be associated with neuroinflammation. Objective: This study is to explore whether the protective mechanism of EA on cognition is related to the regulation of glucose metabolism and neuroinflammation. Methods: APP/PS1 mice were randomly divided into AD group and the treatment (AD + EA) group. In the AD + EA group, EA was applied on Baihui (GV20) and Yintang (GV29) for 20 min and then pricked at Shuigou (GV26), once every alternate day for 4 weeks. Morris water maze (MWM) tests were performed to evaluate the effects of EA treatment on cognitive functions. 18F-FDG PET, immunofluorescence, and western blot were used to examine the mechanisms underlying EA effects. Results: From MWM tests, EA treatment significantly improved cognition of APP/PS1 mice. From the 18F-FDG PET, the levels of uptake rate of glucose in frontal lobe were higher than the AD group after EA. From immunofluorescence and western blot, amyloid-β (Aβ) and neuroinflammation were reduced after EA. Conclusion: These results suggest that EA may prevent cognitive decline in AD mouse models by enhancing glucose metabolism and inhibiting inflammation-mediated Aβ deposition in the frontal lobe.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3