DW: Detected weight for 3D object detection

Author:

Huang Zhi1

Affiliation:

1. School of Information Engineering, Key Laboratory of IOT Security at Mianyang Teachers’ College of Sichuan Province, Mianyang Teachers’ College, Sichuan Province, China

Abstract

It is a generic paradigm to treat all samples equally in 3D object detection. Although some works focus on discriminating samples in the training process of object detectors, the issue of whether a sample detects its target GT (Ground Truth) during training process has never been studied. In this work, we first point out that discriminating the samples that detect their target GT and the samples that don’t detect their target GT is beneficial to improve the performance measured in terms of mAP (mean Average Precision). Then we propose a novel approach name as DW (Detected Weight). The proposed approach dynamically calculates and assigns different weights to detected and undetected samples, which suppresses the former and promotes the latter. The approach is simple, low-calculation and can be integrated with available weight approaches. Further, it can be applied to almost 3D detectors, even 2D detectors because it is nothing to do with network structures. We evaluate the proposed approach with six state-of-the-art 3D detectors on two datasets. The experiment results show that the proposed approach improves mAP significantly.

Publisher

IOS Press

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3