Identification of potential hub genes and regulatory networks of smoking-related endothelial dysfunction in atherosclerosis using bioinformatics analysis

Author:

Guo Julong1,Ning Yachan2,Pan Dikang1,Wu Sensen1,Gao Xixiang1,Wang Cong1,Guo Lianrui1,Gu Yongquan1

Affiliation:

1. Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China

2. Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China

Abstract

BACKGROUND: Endothelial dysfunction, the earliest stage of atherosclerosis, can be caused by smoking, but its molecular mechanism requires further investigation. OBJECTIVE: This study aimed to use bioinformatics analysis to identify potential mechanisms involved in smoking-related atherosclerotic endothelial dysfunction. METHODS: The transcriptome data used for this bioinformatics analysis were obtained from the Gene Expression Omnibus (GEO) database. The GSE137578 and GSE141136 datasets were used to identify common differentially expressed genes (co-DEGs) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) and tobacco. The co-DEGs were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) databases. Additionally, a protein-protein interaction (PPI) network was constructed to visualize their interactions and screen for hub genes. GSE120521 dataset was used to verify the expression of hub genes in unstable plaques. The miRNA expression profile GSE137580 and online databases (starBase 2.0, TargetScan 8.0 and DGIdb v4.2.0) were used to predict the related non-coding RNAs and drugs. RESULTS: A total of 232 co-DEGs were identified, including 113 up-regulated genes and 119 down-regulated genes. These DEGs were primarily enriched in detrimental autophagy, cell death, transcription factors, and cytokines, and were implicated in ferroptosis, abnormal lipid metabolism, inflammation, and oxidative stress pathways. Ten hub genes were screened from the constructed PPI network, including up-regulated genes such as FOS, HMOX1, SQSTM1, PTGS2, ATF3, DDIT3, and down-regulated genes MCM4, KIF15, UHRF1, and CCL2. Importantly, HMOX1 was further up-regulated in unstable plaques (p= 0.034). Finally, a regulatory network involving lncRNA/circRNA-miRNA-hub genes and drug-hub genes was established. CONCLUSION: Atherosclerotic endothelial dysfunction is associated with smoking-induced injury. Through bioinformatics analysis, we identified potential mechanisms and provided potential therapeutic targets.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3