Cyclophosphamide ameliorates membranous nephropathy by upregulating miR-223 expression, promoting M2 macrophage polarization and inhibiting inflammation

Author:

Yao Chunying1,Ma Qiubo1,Shi Ying1,Zhang Na2,Pang Lei1

Affiliation:

1. Department of Nephrology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China

2. Department of Radiotherapy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China

Abstract

BACKGROUND: Membranous nephropathy (MN), also known as membranous glomerulonephritis, is a leading cause of adult nephrotic syndrome. The main pathological features encompass the deposition of immune complexes within the glomerular basement membrane epithelial cells, thickening of the basement membrane, and fusion of the foot process. OBJECTIVE: This study aims to investigate the role of the immune and inflammatory modulator miR-223 in the immunosuppressive and anti-inflammatory effects of cyclophosphamide (CTX) on membranous nephropathy (MN). METHODS: miR-223 mimetics or inhibitors was used to regulate miR-223 levels. LPS induced inflammatory cell model and cell polarization. CTX was used to treat Lipopolysaccharides (LPS) induced inflammatory response and polarization. Cationic bovine serum albumin (c-BSA) induced BALB/c mouse MN model, while CTX was used to treat c-BSA induced MN. RESULTS: The miR-223 level in LPS induced inflammatory model cells was lower than that in control cells. The levels of inflammatory factors in LPS+miR-223 mimetics and CTX+miR-223i cells were lower than those in LPS and miR-223i cells. The protein levels of LPS+miR-223 mimic, CTX+miR-223i macrophage M2 phenotype markers Arginase-1 (Arg1), transforming growth factor β1 (TGF-β1), anti-inflammatory factors interleukin-4 (IL4) and interleukin-13 (IL13) were significantly higher than those of LPS and miR-223i. The effect of CTX was confirmed in a BALB/c mouse MN model induced by cationic bovine serum albumin (c-BSA). CONCLUSION: CTX upregulates the expression of miR-223, promotes polarization of M2 macrophages, alleviates the inflammatory response and renal injury of MN.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3