Prediction of PM2.5 with a piecewise affine model considering spatial-temporal correlation

Author:

Ren Zhenxing1,Zhang Jia23,Zhou Yu1,Ji Xinxin3

Affiliation:

1. College of Computer Science and Technology & College of Data Science, Taiyuan University of Technology, Jinzhong, Shanxi, China

2. Hangzhou City University, Hangzhou, Zhejiang, China

3. xup Architekten Xu und Partner, Hangzhou, Zhejiang, China

Abstract

Over the past several decades, several air pollution prevention measures have been developed in response to the growing concern over air pollution. Using models to anticipate air pollution accurately aids in the timely prevention and management of air pollution. However, the spatial-temporal air quality aspects were not properly taken into account during the prior model construction. In this study, the distance correlation coefficient (DC) between measurements made in various monitoring stations is used to identify appropriate correlated monitoring stations. To derive spatial-temporal correlations for modeling, the causality relationship between measurements made in various monitoring stations is analyzed using Transfer Entropy (TE). This work explores the process of identifying a piecewise affine (PWA) model using a larger dataset and suggests a unique hierarchical clustering-based identification technique with model structure selection. This work improves the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) by introducing Kullback-Leibler (KL) Divergence as the dissimilarity between clusters for handling clusters with arbitrary shapes. The number of clusters is automatically determined using a cluster validity metric. The task is formulated as a sparse optimization problem, and the model structure is selected using parameter estimations. Beijing air quality data is used to demonstrate the method, and the results show that the proposed strategy may produce acceptable forecast performance.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3