Research of news text classification method based on hierarchical semantics and prior correction

Author:

Sun Ping1,Song LinLin2,Yuan Ling2,Yu Haiping1,Wei Yinzhen1

Affiliation:

1. Wuhan Vocational College of Software and Engineering, Wuhan, Hubei, China

2. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China

Abstract

News text is an important branch of natural language processing. Compared to ordinary texts, news text has significant economic and scientific value. The characteristics of news text include structural hierarchy, diverse label categories, and limited high-quality annotation samples. Many machine learning and deep learning methods exist to analyze various forms of news text. However, due to label imbalance, hierarchical semantics, and confusing labels, current methods have limitations. Therefore, this paper proposes a news text classification framework based on hierarchical semantics and prior correction (HSPC). Firstly, data augmentation is used to enhance the diversity of the training set and adversarial learning is employed to improve the resistance of the model with its robustness. Then, a hierarchical feature extraction approach is employed to extract semantic features from different levels of news texts. Consequentially, a feature fusion method is designed to allow the model to focus on relevant hierarchical semantics for label classification. Finally, highly confusing label predictions are corrected to optimize the label prediction of the model and improve confidence. Multiple experiments are performed on four widely used public datasets. The experimental results indicate that HSPC achieves higher classification accuracy compared to other models. On the FCT, AGNews, THUCNews, and Ohsumed datasets, HSPC improves the accuracy by 1.03%, 1.38%, 2.55%, and 1.15%, respectively, compared to state-of-the-art methods. This validates the rationality and effectiveness of the designed mechanisms.

Publisher

IOS Press

Reference19 articles.

1. A Dirichlet process term-based mixture model for short text stream clustering;Chen;Appl Intell,2020

2. An adaptive LDA optimal topic number selection method in news topic identification;Zheng;IEEE Access,2023

3. Personalized news recommendation: methods and challenges;Wu;ACM Trans Inf Syst,2023

4. Sentiment Analysis for Arabic Social Media News Polarity;Hnaif;Intelligent Automation & Soft Computing,2021

5. ML-KNN: A lazy learning approach to multi-label learning;Zhang;Pattern Recognition,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3