CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, Double-Blind, Two-Center Study

Author:

Wenzel Gregor R.1,Roediger Jan12,Brücke Christof1,Marcelino Ana Luísa de A.1,Gülke Eileen3,Pötter-Nerger Monika3,Scholtes Heleen4,Wynants Kenny4,Juárez Paz León M.4,Kühn Andrea A.1

Affiliation:

1. Department of Neurology, Movement Disorders & Neuromodulation Section, Charité –University Medicine Berlin, Berlin, Germany

2. Einstein Center for Neurosciences Berlin, Charité –University Medicine Berlin, Berlin, Germany

3. Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany

4. Boston Scientific, Valencia, CA, USA

Abstract

Background: Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. Objective: We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. Methods: For 23 Parkinson’s disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. Results: Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. Conclusion: Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3