Ground state of the Gross–Pitaevskii equation with a harmonic potential in the energy-critical case

Author:

Pelinovsky Dmitry E.1,Sobieszek Szymon1

Affiliation:

1. Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada, L8S 4K1

Abstract

Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variationally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of this interval and diverges to infinity at the other end. We explore the shooting method in the limit of large norm to prove that the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter versus the supremum norm.

Publisher

IOS Press

Reference29 articles.

1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.

2. Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire;Aubin;J. Math. Pures Appl.,1976

3. Ground state in the energy super-critical Gross–Pitaevskii equation with a harmonic potential

4. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents;Brezís;Commun. Pure Appl. Math.,1983

5. Semilinear elliptic equations and supercritical growth;Budd;J. Differential Equations,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3