Optimization design of magnetic gear integrated PMSG using improved bat algorithm for wave energy conversion

Author:

Fang Hong Wei1,Wang Yu1

Affiliation:

1. , Tianjin University, , China

Abstract

The magnetic gear integrated permanent magnet synchronous generator (MG-PMSG) can reduce the acoustic noise and mechanical loss, which are caused by the mechanical gear box. It also has the merits of increasing efficiency and reducing system volume when it is used for wave energy conversion system. In this paper, an improved bat algorithm (BA) based on velocity weighting factor is proposed. The improved BA is applied for the optimization design of permanent magnet (PM) to reduce the cogging torque of MG-PMSG. The numerical model is constructed by response surface methodology (RSM). The influences of key pole shape parameters on cogging torque were investigated, including the eccentric distance, the pole-arc coefficient and the permanent magnet thickness. A global optimization design is then carried out by using the improved BA, so that the magnet dimensions corresponding to the optimal cogging torque are obtained. Finally, the performances of the MG-PMSG with the optimized permanent magnet are analyzed by finite element method. Results show that cogging torque, steady torque ripple and back electromotive force (EMF) waveform distortion of the optimized MG-PMSG are reduced.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Analysis of Five-phase Fault-tolerant Permanent Magnet Vernier Machine with Equivalent Magnetic Network Method;2022 25th International Conference on Electrical Machines and Systems (ICEMS);2022-11-29

2. Intelligent Computation Offloading Mechanism of UAV in Edge Computing;2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT);2022-08

3. Design and Optimization of Magnetic Gear Composite Motor for Autonomous Underwater Vehicle;2021 24th International Conference on Electrical Machines and Systems (ICEMS);2021-10-31

4. Design and Analysis of a Novel Dual-Excitation Flux Modulated PermanentMagnet Electric Machine;2021 24th International Conference on Electrical Machines and Systems (ICEMS);2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3