Migration of different LNAPLs in subsurface under groundwater fluctuating conditions by the simplified image analysis method

Author:

Flores Giancarlo1,Katsumi Takeshi2,Eua-Apiwatch Sitthiphat3,Lautua Siatua4,Inui Toru2

Affiliation:

1. Graduate School of Engineering, Kyoto University, Japan

2. Graduate School of Global Environmental Studies, Kyoto University, Japan

3. Department of Civil Engineering, Faculty of Engineering, Burapha University, Thailand

4. Watercare Services Limited, Auckland, New Zealand

Abstract

The correct understanding of the dynamic behavior of Light Non-Aqueous Phase Liquids (LNAPLs) under fluctuating groundwater conditions, difficult to test with conventional methods, is important for the adequate remediation of contaminated soils. In this study, we verified the suitability of the Simplified Image Analysis Method (SIAM) as a tool to assess the saturation distribution of water and Non-Aqueous Phase Liquids (NAPLs) in granular soils, by testing its basic assumption, the existence of a linear relationship between water saturation (Sw), NAPL saturation (So) and optical density (Di), for nine different NAPLs. We then utilized SIAM to study the dynamic behavior of four different LNAPLs that were infiltrated to 1D columns filled with Toyoura sand, and later subjected to two cycles of drainage-imbibition of the water table. It was found that, under similar conditions, the depth of LNAPL infiltration was linearly correlated to the viscosity of the contaminants (R2 = 0.84), the difference between the depth of the mobile fraction after both drainage and imbibition stages was linearly correlated to the interfacial tension values (R2 = 0.79), and the viscosity was logarithmically correlated to the residual saturation ratios for all different NAPLs (R2 = 0.95), correlations that can help us understand and predict the behavior of different contaminants when spilled in the ground.

Publisher

IOS Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3